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Abstract

In our day-to-day discourse on uncertainty, words like belief, chance, likelihood,
and probability are commonly encountered. Often, these words are used interchange-
ably, because they are intended to encapsulate some vaguely articulated notion about
the unknowns. The purpose of this paper is to propose framework that is able to show
how each of these terms can be made to reflect a distinct meaning. To construct this
framework, we use a basic scenario upon which caveats are introduced. Each caveat
motivates us to bring in one or more of the above labels. The scenario considered here
is very basic; it arises in both the biomedical and the industrial contexts, and easily
generalizes.

This paper is expository and much of what is said here is not new. We require of
the reader an appreciation of the calculus of probability. However, in order to make
our distinctions transparent, probability has to be interpreted subjectively, not as a
relative frequency.
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1 Probability and Chance

1.1 Introduction: Statement of the Problem

Consider the following archetypal problem that commonly arises in the contexts of biomedicine,

engineering, and the physical sciences.

Suppose that at some reference time τ , the “now time”, YOU are asked to predict the

time to failure T of some physical or biological unit. The capitalized YOU is to emphasize

the fact that it is a particular individual, namely yourself, that has been asked to make the

prediction. To facilitate prediction, you examine the unit carefully and learn all that you

can about its genesis: how, when, and where it was made. You denote this information

by H(τ), for history at time τ . In the case of biological units, H(τ) would pertain to

genetic and/or medical information. Suppose, as is generally true, that based on H(τ)

you conclude that prediction with certainty is not possible. Consequently, you are now

faced with two choices: walk away from the problem, or make an informed guess about T .

Suppose that you choose the second option and are prepared to make guesses about

the event (T ≥ t), for some t > 0. In reliability, t > 0 is known as the “mission time”.

There are several additional caveats to this basic problem that go into forming our overall

framework; these will be presented in Sections 2 and 3.

To keep the mathematics simple, you introduce a counter, say X, and adopt the con-

vention that X = 1 (a “success”) whenever T ≥ t, and X = 0 (a “failure”), otherwise.

Thus the events (T ≥ t) and (X = 1) are isomorphic; however, there is a loss of granularity

in going from T to X. This is because X continues to equal one, even when T ≥ t + a,

for any and all a > 0. With the introduction of X, informed guesses about (T ≥ t) boil

down to informed guesses about (X = 1). But what do we mean by an informed guess,

and how shall we make this operational?
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1.2 Personal Probability: Making Guesses Operational

By informed guess, we mean a quantified measure of your uncertainty about the event

(X = 1) in the light of H(τ), and subsequent to a thoughtful evaluation of its conse-

quences. Now, it is generally well acknowledged that probability is a satisfactory way to

quantify uncertainty, and to some, like Lindley (1982), the only satisfactory way. There

are several interpretations of probability [cf. Good(1965)]. The one we shall adopt is per-

sonal probability, also known as subjective probability. Here, you quantify your uncertainty

about the event (X = 1), based on H(τ), by your personal probability denoted

PY(X = 1;H(τ)). (1)

The subscript indexing P emphasizes the fact that the specified probability is that of a

particular individual, namely, you. For convenience, we set τ = 0 and denote H(0) by

simply H. Henceforth, we also omit the subscript associated with P , so that Equation 1

is written

P (X = 1;H) = p, (2)

where 0 < p < 1. The p so specified is a personal probability because it is not unique to all

persons; more important, it can change with time for the same individual. This is because

the background history for this person also changes, and it is the history that plays a

key role in specifying a personal probability. Thus an informed guess is tantamount to

specifying a p, where p is a personal probability.

To make an informed guess operational, that is, to make a pragmatic use of it, we need

to interpret p. For this we appeal to de Finetti (1974) who proposed that p represent the

amount you—the specifier of p—is willing to stake in a two-sided bet (or gamble) about

the event (X = 1). That is, should X turn out to be one, you receive as a reward one

monetary unit against the p staked out by you. Should X turn out to be zero, then the

amount staked, namely p, is lost. By a two-sided bet, we mean the willingness to stake

p for the event (X = 1), or an amount (1 − p) for the event (X = 0). That is, you are
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indifferent between the two gambles: one monetary unit in exchange for p if (X = 1), or

one monetary unit in exchange for (1 − p) if (X = 0). It is useful to bear in mind that

in keeping with the spirit of the individual nature of personal probability, the amount p

represents your stake. For the same event (X = 1), your colleague may choose to stake

a different amount p̃, with p̃ 6= p. It is also important to note that with p interpreted

as a gamble, the bet will only be settled when X reveals itself. Thus bets can only be

made operational for events that are ultimately observed. We do not consider here the

disposition of the second party in the bet; we assume that the second party is willing to

accept any bet put forth by you.

Thus to summarize, in the context of this paper, the word “probability” is used to

denote the amount an individual is prepared to stake in a two-sided bet about an uncertain

event. This probability can be specified based on H alone, and it is not essential that H
contain data on items judged to be similar to the item in question. That is, personal

probabilities can be specified without the benefit of having observed data.

1.3 Chance or Propensity: A Useful Abstraction

Whereas specifying a personal probability can be done solely by introspection considering

H, a more systematic approach, which involves breaking the problem into smaller, easier

problems, begins with invoking the law of total probability on the event (X = 1;H).

Specifically, for some unknown quantity θ, 0 < θ < 1, and an entity π(θ;H), whose

interpretation is given later in Section 1.4,

P (X = 1;H) =

1∫

0

P (X = 1|θ;H) π(θ;H)dθ, (3)

=

1∫

0

P (X = 1|θ)π(θ;H)dθ, (4)

if you assume that X is independent of H given θ. That is, were you to know θ, then

knowledge of H is unnecessary. The meaning of θ, known as a parameter, remains to be
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discussed, but for now we state that in the language of personal probability, Equation 3

implies an extension of the conversation from P (X = 1;H) to P (X = 1|θ;H). The idea

here is that after invoking the assumption of independence, you may find it easier to

quantify your uncertainty about (X = 1) were you to know θ, than quantifying the

uncertainty based on H. Whereas the dimension of H can be very large, the dimension

of θ is one. Thus the role of the parameter θ is to simplify the process of uncertainty

quantification by imparting to X independence from H.

In Equation 4, the quantity P (X = 1|θ) is known as a probability model for the binary

X. Following Bernoulli, you let P (X = 1|θ) = θ, where P (X = 1|θ) represents your bet

(personal probability) about the event (X = 1) were you to know θ. This brings us to the

question of what does θ mean? That is, how should we interpret θ?

The meaning of θ was made transparent by de Finetti [cf. Lindley and Phillips (1976)]

in his now famous theorem on binary exchangeable sequences. Loosely speaking, this

theorem says that if a large number of units judged similar to each other (the technical

term is exchangeable) and to the unit in question were to be observed for their survival or

failure until t, and if Xi = 1 if the ith item survived until t (Xi = 0 otherwise), then

θ = lim
n→∞

1
n

n∑

i=1

Xi; (5)

that is θ is the average of the Xi’s, when the number of Xi’s is infinite. De Finetti refers

to this θ as a chance or propensity. Note that there is no personal element involved in

defining θ, other than the fact that θ derives from the behavior of exchangeable sequences,

and exchangeability is a judgment. What you judge to be exchangeable may not sit well

with your colleagues. Because θ connotes the limit of an exchangeable binary sequence, θ

can be seen as an objective entity. More important, since θ cannot be actually observed

(n in the Equation 5 is infinite), we claim that chance is an abstract construct. It is a

useful abstraction all the same, because in writing P (X = 1|θ) = θ, you are saying that

your stake on the uncertain event (X = 1) is θ, were you to know θ. But no one can
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possibly tell you what θ is, and this is what leads us to the next section. But before we

do so, it may be of interest to mention a few words about two other interpretations of θ.

One is due to Laplace, who in keeping with the scientific climate of his time, and being

influenced by Newton, was concerned with cause and effect relationships. Accordingly, to

Laplace, θ was the cause of an effect, namely, the event (X = 1). The second interpretation

of θ stems from the relative frequency interpretation of probability. Indeed, here θ is taken

to be the probability that X = 1.

Finally, even though the notion of chance introduced here has been in the context of

binary variables, a parallel notion also exists for other kinds of variables.

1.4 Probability of Chance: Taking Chances with Chance

Since θ is unknown, and in principle can never be known, you are uncertain about θ.

In keeping with the dictum that all uncertainty be described by probability, you let

PY(Θ ≤ θ;H) encapsulate your bet on the event (Θ ≤ θ). Here, in keeping with stan-

dard convention, all unknown quantities are denoted by capital letters and their realized

values by the corresponding small letters. Since Θ can take all values in the continuum

(0, 1), we shall assume that PY(Θ ≤ θ;H) is “absolutely continuous,” so that its density

at θ exists, for 0 < θ < 1. We denote this density by πY(θ;H) and interpret it as

π(θ;H)dθ ≈ P (θ ≤ Θ ≤ θ + dθ;H) .

For convenience, the subscript has been dropped.

Thus π(θ;H)dθ is approximately your personal probability that the unknown chance Θ

is in the interval [θ, θ + dθ]. Since θ will never be known, the bet on Θ cannot be settled.

However, since π(θ;H) goes into determining P (X = 1;H)—see Equation 6 below—and

since bets on (X = 1;H) can be settled, π(θ;H) can also be interpreted as a technical

device that helps you specify your bet on an observable.

With the above in place, plus the fact that in our case P (X = 1|θ) = θ, Equation 4
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becomes

P (X = 1;H) = p =

1∫

0

θ · π(θ;H)dθ. (6)

Equation 6 above is noteworthy. It embodies (i) a personal probability about the event

(X = 1)—the left hand side; (ii) a chance Θ taking the value θ; and (iii) a personal

probability about the chance Θ belonging to the interval [θ, θ +dθ]—the entity π(θ;H)dθ.

This equation helps us make transparent the difference between probability, chance and

the probability of chance.

There is another angle from which Equation 6 can be viewed. This comes from the

fact that the right-hand side of Equation 6 is your expected value of Θ, the expected value

being determined by your π(θ;H). Denoting this expected value by EY(Θ), we have

P (X = 1;H) = p = EY(Θ),

implying that your personal probability for the event (X = 1) is your expected value of

the chance Θ with respect to π(θ;H), your personal probability about chance.

2 The Likelihood of Chance

2.1 Introducing the Caveat of Data

We supplement the framework of the basic problem of Section 1.1 by introducing our first

caveat. Suppose that in addition to H(τ), you also have at hand the binary x1, . . . , xn,

where xi = 1 if the life-length of the i-th item has actually been observed to exceed t, and

xi = 0, otherwise. The n items that go into constituting the data x = (x1, . . . , xn) are

judged by you, prior to observing the x, to be similar (or exchangeable) to the item in

question. What can you now say about the unobserved X? In other words what is your

prediction for the event (X = 1) in the light of H(τ) as well as x? Certainly, the observed

x should help you sharpen your prediction. Consequently, you are now called upon to

assess P (X = 1;x,H).
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One possibility would be to think hard about all that you have at hand, namely, x and

H, and then simply specify P (X = 1;x,H) as p∗, where p∗ ∈ (0, 1). Here p∗ encapsulates

your bet on the event (X = 1) in the light of x and H. If p∗ happens to be identical to

the p of Equation 2, then you are declaring the opinion that the data x has not had a

sufficient impact on your beliefs for you to change your bet from your original p. From a

philosophical point of view, there is nothing in the theory of subjective probability that

stops you from specifying a p∗ by introspection alone. However, from a computational

point of view, it is efficient to proceed formally along the lines given below, because

introspection to specify p∗ subsequent to having specified p may lead to an inconsistency

(technically incoherence). By incoherence, we mean a scenario involving a gamble in which

“heads I win, tails you lose.”

2.2 Bayes’ Law: The Mathematics of Changing Your Mind

To address the scenario presented in Section 2.1, you start by pondering the matter of

assessing your uncertainty about (X = 1), in the light of H, were you to know (but do not

know) the disposition of X1, . . . , Xn; here Xi = 1, if the i-th item judged to be similar to

the item in question has a life-length that exceeds t (Xi = 0, otherwise). That is, what

would your P (X = 1|X1, . . . , Xn,H) be? To address this question, you follow the same

line of reasoning used to arrive upon Equation 4; that is, extend the conversation to θ,

and obtain

P (X = 1|X1, . . . , Xn;H) =

1∫

0

P (X = 1|θ, X1, . . . , Xn) · π(θ|X1, . . . , Xn;H)dθ,

=

1∫

0

P (X = 1|θ) · π(θ|X1, . . . , Xn;H)dθ,

=

1∫

0

θ · π(θ|X1, . . . , Xn;H)dθ. (7)

The second equality is a consequence of your judgment that X is independent of
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X1, . . . , Xn, were you to know θ, and the third a consequence of choosing P (X = 1|θ) = θ

as a probability model for X. The quantity π(θ|X1, . . . , Xn,H) is the probability density

at θ of your P (Θ ≤ θ|X1, . . . , Xn,H).

To obtain π(θ|X1, . . . , Xn,H) you invoke Bayes’ Law; thus

π(θ|X1, . . . , Xn;H) ∝ P (X1, . . . , Xn|θ;H) · π(θ;H)

=
n∏

i=1

P (Xi = xi|θ) · π(θ;H), (8)

by the multiplication rule, and by the independence of the Xi’s from each other, were you

to know θ, and with xi = 1 or 0. For P (Xi = xi|θ), you once again choose Bernoulli’s

model, so that P (Xi = xi|θ) = θxi(1− θ)1−xi .

With the above in place, you now have

π(θ|X1, . . . , Xn;H) ∝
n∏

i=1

{
θxi(1− θ)1−xi

}
π(θ;H). (9)

Since π(θ;H) encapsulates your uncertainty about Θ in the light of H alone, and

π(θ|X1, . . . , Xn;H) your uncertainty about it were you to be provided additional infor-

mation via the X1, . . . , Xn, we say that Bayes’ Law provides a mathematical prescription

for changing your mind about the unobservable Θ. Once Equation 9 is at hand we may

incorporate it in Equation 7 to write

P (X = 1|X1, . . . , Xn;H) ∝
1∫

0

θ
n∏

i=1

{
θxi(1− θ)1−xi

}
π(θ;H)dθ, (10)

as a prescription of how to change your mind about the event (X = 1) itself.

2.3 Likelihood Function: The Weight of Evidence

There are two aspects of Equations 8 through 10 that need to be emphasized. The first

is that the left-hand sides of these equations pertain to conditional events, namely the

proposition that “were you to know the disposition of the Xi’s, i = 1, . . . , n” ; that is,
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supposing you were provided with the realizations of each Xi. The second feature is that

they inform the reader as to how you express your uncertainties (or bets) about Θ and X

respectively, once the Xi’s reveal themselves as xi. Implicit to this bet is your particular

choice of probability models P (X = x|θ) and P (Xi = xi|θ), i = 1, . . . , n.

In actuality, however, the Xi’s have indeed revealed themselves in the form of data, as

x = (x1, . . . , xn), where each xi is known to you as being one or zero. In view of this, the

left-hand sides of Equations 8 through 10 should be re-written as π(θ; x1, . . . , xn,H) and

P (X = 1;x1, . . . , xn,H) respectively. But more significant is the fact that the quantity

P (Xi = xi|θ) of Equation 8 can no longer be interpreted as a probability. This is because

the notion of probability is germane only for events that have yet to occur, or for events

that have occurred but whose disposition is not known to you. In our case, Xi is known

to you as xi = 1 or xi = 0, thus P (Xi = xi|θ) is not a probability. So what does the

quantity P (Xi = xi|θ) = θxi(1 − θ)1−xi , with xi fixed as 1 or 0, and θ unknown, mean?

Similarly, in the context of Equation 9 with r =
∑n

i=1 xi, what does the quantity

n∏

i=1

{
θxi(1− θ)1−xi

}
= θr(1− θ)n−r, (11)

with n and r known, but θ unknown, mean? Note that r is the total number of successes.

As a function of θ, with n and r fixed, the quantity θr(1− θ)n−r is called the likelihood

function of θ; it is denoted, LY(θ; n, r), the subscript, which will henceforth be dropped,

signaling the fact that like probability, the likelihood function is also personal. Since

L(θ; n, r) is not a probability, the likelihood function, even though it is derived from a

probability model, is not a probability. It can be viewed as a function that assigns weights

to the different values θ that Θ can take, in the light of the known n and r; these latter

quantities can be viewed as evidence. Thus the likelihood function can be interpreted as

a function that prescribes the weight of evidence provided by the data for the different

values that chance Θ can take. For example, with n = r = 1, L(θ; n = r = 1) = θ;

this suggests—see Figure 1—that with n = r = 1, more weight is given by the likelihood
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Figure 1: The likelihood function with n = r = 1

function to the large values of θ than to the smaller values.

To summarize, the expression P (Xi = xi|θ) = θxi(1 − θ)1−xi , specifies a probability

of the event (Xi = xi) when Xi is unknown, and θ is assumed known; whereas with Xi

known as xi, it specifies a likelihood for the unknown θ. With x known, Equation 10 when

correctly written becomes

P (X = 1;x,H) ∝
1∫

0

θ(θr(1− θ)n−r) · π(θ;H)dθ. (12)

Equation 12 is interesting. It encapsulates, as we read from left to right, the four

notions we have introduced thus far: personal probability (the left-hand side); chance (the

parameter θ); the likelihood of chance (the quantity θr(1− θ)n−r); and the probability of

chance (the quantity π(θ;H)).

Note also that the right-hand side of Equation 12 is the expected value of a function

of Θ, namely, the function Θr+1(1−Θ)n−r. Thus we may say that the effect of the data

x is to change your bet on the event (X = 1) from EY(Θ) to EY(Θr+1(1−Θ)n−r).
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3 Imprecise Surrogates: Motivation for Vagueness & Belief

In Section 1 we outlined a problem that is the focus of our discussion, and in Section 2

we added a feature to it by bringing in the role of data. The notions used in Sections 1

and 2 are probability, chance, and likelihood. Are these the only ones needed to address

all problems pertaining to uncertainty? Are there circumstances that pose a challenge

to us in terms of being able to lean on these notions alone? If so, what are these, and

under what scenarios do we need to go beyond what has been introduced and discussed?

The purpose of this section is to address the above and related questions. But first we

bring into play our second caveat and explore the circumstances under which the notions

of probability, chance, and likelihood will suffice to address this caveat. The caveat in

question pertains to the presence or not of detectable anomalies during inspection, quality

control, and other diagnostic testing functions.

3.1 Anomalies: A Surrogate of Failure

To keep our discussion simple, suppose that in order to assess your uncertainty about

the event (X = 1), you have at your disposal H and also a knowledge of the presence or

the absence of a detectable anomaly. An anomaly could be a visible defect, or noticeable

damage, or some other suitable indicator of imperfection. Anomalies could be present

and yet not be detected. We denote the presence of a detected anomaly by letting a

binary variable Y take the value 1; the absence of a detectable anomaly by letting Y = 0.

The presence of an anomaly does not necessarily imply that X will be zero; similarly,

its absence is no assurance (to you) that X will be one; see Figure 2. Rather, like the

X1, . . . , Xn of Section 2, the presence or absence of a detectable anomaly helps you sharpen

your assessment of the uncertainty about (X = 1).

Suppose then, that Y = y has been observed, with y = 1 or 0, and that you are required

to assess P (X = 1; y,H). A simple way to proceed would be to treat y as a part of H,
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Figure 2: Effect of anomalies on survival

and upon careful introspection specify

P (X = 1; y,H) = p̂, 0 < p̂ < 1,

as your bet on the event (X = 1). The p̂ above is like the p of Section 1, in the sense

that if p̂ = p, then y has had no effect on your disposition about (X = 1). There is, of

course a more systematic way to incorporate the effect of y into your analysis, and this

involves a use of the likelihood. To see how, start by pondering the matter of assessing

your uncertainty about the event (X = 1), in the light of H, were you to know (but do

not know) the disposition of Y . This is what was also done in Section 2.2. That is, you

ask yourself what P (X = 1|Y ;H) should be? By Bayes’ Law

P (X = 1|Y ;H) ∝ P (Y = y|X = 1;H) · P (X = 1;H),

y = 1 and 0. For P (X = 1;H) you may use your p of Equation 2. To proceed further,

you need to specify a probability model for Y , conditional on (X = 1). That is, you need

to specify P (Y = 1|X = 1;H) and P (Y = 0|X = 1;H); this is tantamount to specifying
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a joint distribution for X and Y . Once this can be done, you have

P (X = 1|Y ;H) ∝ P (Y = y|X = 1;H) · p. (13)

However, in actuality, Y has been observed as y = 1 or y = 0. Consequently, Equation 13

becomes

P (X = 1; y,H) ∝ L(X = 1; y,H) · p, (14)

where L(X = 1; y,H) is your likelihood function for the unknown event (X = 1) in the

light of the evidence y and H. The probability model P (Y = y|X = 1;H) helps you

specify the likelihood. Equation 14 says that your bet on the event (X = 1) in the light

of y and H, is proportional to your bet on (X = 1) based on H alone, multiplied by your

likelihood. The approach prescribed above is more systematic than the one involving the

specification of p̂ based on introspection alone, because it incorporates the p of Equation 2.

A key point to note is that L(X = 1; y,H) is the likelihood of an observable event; it is

not the likelihood of chance Θ discussed in Section 2.3. Should you prefer to work with

the likelihood of chance, then you must introduce chance into your pondering. To do so,

you may proceed as follows:

P (X = 1|Y ;H) =

1∫

0

P (X = 1|θ, Y ;H) · π(θ|Y ;H)dθ,

which extends the conversation to θ, as was done to arrive at Equation 3. If you now

assume that (X = 1) is independent of both Y and H, were you to know θ, and assume

Bernoulli’s model, then

P (X = 1|Y ;H) =

1∫

0

θ · π(θ|Y ;H)dθ. (15)

But by Bayes’ law

π(θ|Y ;H) ∝ P (Y = y|θ;H) · π(θ;H). (16)

Consequently, to proceed further, you need to specify a probability model for the anomaly

Y , were you to know θ, and also π(θ;H), an entity that has already appeared in Sections 1
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and 2. Since Y has in actuality been observed (as y = 1 or y = 0), Equation 16 becomes

π(θ; y,H) ∝ L(θ; y,H) · π(θ;H),

where L(θ; y,H) is the likelihood function of the chance Θ, in the light of H and evidence

about the anomaly y. With the above in place Equation 15 becomes

P (X = 1; y,H) ∝
1∫

0

θ · L(θ; y,H) · π(θ;H)dθ.

To compare the above equation with Equation 14 (their left hand sides are the same), we

note that since p = E(Θ), Equation 14 may also be written as

P (X = 1; y,H) ∝
1∫

0

θ · L(X = 1; y,H) · π(θ;H)dθ.

The last two equations signal the fact that in order to incorporate the effect of the

detected anomalies into the assessment of your uncertainty about (X = 1), you should

be prepared to either specify the likelihood of (X = 1) in the light of y (and H), or the

likelihood of θ in the light of y (and H), whichever is more convenient. To specify these

likelihoods, you may want to specify P (Y = y|X = 1;H) or P (Y = y|θ;H), probability

models for Y , were you to know X or θ, respectively. Of these, the former may be easier

to assess than the latter, since it is based only on observables. We shall therefore focus

on the case P (Y = y|X;H), and refer to it as a postmortem probability model.

3.2 Eliciting Postmortem Probabilities: Potential Obstacles

The material of Sections 1 and 2 required of you the specification of P (X = x|θ) and

π(θ;H), for x = 1 or 0. For the former, Bernoulli’s model is a natural choice; for the

latter, a beta density with parameters α and β is a choice with much flexibility. Thus, for

0 < θ < 1

P (X = x|θ) = θx(1− θ)1−x,
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and

π(θ;H) = π(θ; α, β) =
Γ(α + β)
Γ(α)Γ(β)

θα−1(1− θ)β−1.

Coming to the scenario of Section 3, you are required to specify the above, and also a

model for the postmortem probability P (Y = y|X = x;H), for x, y = 1 or 0. The latter

could pose two difficulties. The first is that you should be able to probabilistically relate

detectable anomalies and failure; Figure 2 with the direction of the arrows reversed could

provide guidance. The second—a bigger problem—can arise because of the fact that the

absence or the presence of any trait which qualifies as an anomaly has may not be easily

determined. For example, both a surface scratch and a dent qualify as defects, but the

former could be less deleterious to an item’s survival than the latter. Also, at what point

does a rough scratch get labelled as a dent? The classification of an anomaly is therefore

not crisp, so that the event “anomaly” is not well defined. It is this lack of crispness that

motivates a consideration of “vagueness” as another aspect of uncertainty quantification;

more on this will be said in Section 4.

One manifestation of this absence of crispness is that responses to questions for eliciting

postmortem probabilities tend to be unhelpful. The following two responses from an actual

scenario are illustrative:

i) “If the unit works, there is a less than 20% chance that we would have detected an

anomaly. If it does not, we would be seeing something 20-40% of the time.”

ii) “If it works, that means that it was well manufactured. If it does not, then it means

that it was handled poorly when it was shipped.”

Clearly, pinning down postmortem probabilities from statements like i) and ii) above

is not possible. At best i) can provide bounds on the postmortem probabilities, and ii)

has no probabilistic content whatsoever. Yet i) and ii) provide information, albeit not in

the form required by the calculus of probability.
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To summarize, as long as the event “anomaly” is well defined so that one is able to

precisely specify the postmortem probabilities, the development of Section 3.1 can be used,

and to do so all that one needs are the notions of probability, chance, and likelihood. Once

difficulties of the type discussed above come into play, postmortem probabilities cannot

be elicited. When such is the case, the notions of “vagueness” and “belief” enter the

arena of uncertainty quantification. We emphasize that we do not see these notions as

a prelude to supplanting probability; rather, they enhance probability by making its use

more encompassing. However, to some, like Zadeh (1978), the notion of vagueness invites

alternatives to probability, a matter upon which we disagree.

4 Harnessing Vagueness: Uncertainty Quantification Under
Imprecision

What do we mean by the term “vagueness”? Is it synonymous with the term “impreci-

sion”? How do vagueness and imprecision enter the arena of uncertainty quantification?

These are some of the questions that we aim to address in this section. We shall use the

scenario of anomalies discussed in Section 3 as a point of discussion.

4.1 Fuzzy Sets and the Uncertainty of Classification

As a preamble, recall that in Section 3.1, Y was a binary variable taking values y = 0 or

y = 1, with Y = 0(1) denoting the absence (presence) of a detectable anomaly. Declaring

that Y = 0 or 1 is often a judgment call, which does not encapsulate the degree of the

anomaly. In this section we refine the above process by introducing some granularity to

the values y that Y can take. To do so, we let Y denote some undesirable characteristic

of the item in question that can be quantified—for instance the depth of a scratch—and

allow Y to take a continuum of values y in some well defined range, say R = [0,M ], where

M is specified. Let Ã, a subset of R, be the set of all y’s that lead to the assessment that

the item in question has an anomaly. Now if there exists a value y∗ such that for any
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y ≥ y∗ an anomaly is declared, then Ã is called a crisp (or a sharp) set; crisp to reflect the

fact that Ã has well defined boundaries. Consequently, any y can be placed with precision

in the set Ã, or its complement. Crisp sets are said to adhere to the law of the excluded

middle, in the sense that any y either does belong or does not belong to Ã. However, if it

is not possible to identify a y∗ of the kind described above, then a boundary of Ã is not

well defined. Consequently, we are unable to classify the membership of certain y’s in Ã

with definitiveness (or precision). Such y’s can simultaneously belong and not belong to

Ã. Sets which exhibit the property of having boundaries that are not sharp are said to

be fuzzy. Fuzzy sets do not adhere the law of the excluded middle. In the context of the

scenario considered here, one may not be able to classify, with definiteness, certain defects

as being anomalies. That is, there could arise, in practice, scenarios in which there is an

uncertainty (in a subject matter specialist’s mind) about classifying a defect as being an

anomaly or not, and also an unwillingness (of the specialist) to assign probabilities to the

uncertainty of classification.

To summarize, fuzzy sets are those whose boundaries are not well defined, and impre-

cision pertains to an inability to place with certainty every element of a set, such as R,

into its fuzzy subset such as Ã. That is, imprecision is a consequence of vagueness.

The Kolmogorov axiomatization of probability is developed on the premise that proba-

bility measures be defined on sharp sets [cf. Billingsley (1985), p. 20]. Thus the appearance

of fuzzy sets requires of us ways to develop approaches whereby probabilities can be en-

dowed to fuzzy sets as well. A strategy for doing so is via the introduction of “membership

functions” which, though not probabilistic, can be seen as a subject matter specialist’s

classification “probabilities.” Membership functions are discussed in Section 4.2 and their

use for inducing probabilities on fuzzy sets discussed in Section 4.3. As a final reminder,

it is important to keep in mind that the material of Sections 4.2 and 4.3 will not come

into play if the event “anomaly” can be well defined.
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Figure 3: Membership function of a fuzzy set Ã

4.2 The Membership Function of a Fuzzy Set

The membership function of a fuzzy set Ã encapsulates the degree to which any y ∈ R
belongs to Ã. It is denoted by µ

Ã
(y), for every y. It is important to note that µ

Ã
(y) is

not a probability, because
∑
y

µ
Ã
(y) need not be one; however, it is often the case that

0 ≤ µ
Ã
(y) ≤ 1, for all y. Operations with fuzzy sets, such as unions, intersections and

complements are facilitated by the membership function. Like probability, the membership

function is subjectively specified, and may change from person to person. The membership

function of a crisp set is an identity function; i.e. if Ã is a crisp set, then µ
Ã
(y) = 0 for

y < y∗ and µ
Ã
(y) = 1, otherwise. For the scenario of anomalies considered here, with

y encapsulating the magnitude of a defect, µ
Ã
(y) would be of the form illustrated in

Figure 3. Small values of y would certainly not be viewed as an anomaly and large values

certainly would. For the intermediate values of y, µ
Ã
(y) shows the extent to which y

would be judged (by one particular individual) to be an anomaly.
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4.3 Endowing Probabilities to Fuzzy Sets

By endowing probabilities to fuzzy sets we mean assessing our personal probability that Y

belongs to Ã in the light of the membership function µ
Ã
(y). For this we first need to assess

our personal probability that Y reveals itself as y—that is our probability that the outcome

of Y is y—and our personal probability that the revealed y belongs to Ã. Supposing

Y to take discrete values, we denote the above personal probabilities by PY(Y = y)

and PY(y ∈ Ã) respectively. The need for this latter probability entails a philosophical

argument with roots that can be traced to Laplace. By interpreting µ
Ã
(y) as a likelihood

function and invoking Bayes’ law, Singpurwalla and Booker (2003) argue that:

PY(Y ∈ Ã|µ
Ã
(y)) =

∑
y

[
1 +

1− µ
Ã
(y)

µ
Ã
(y)

· P (y /∈ Ã)

P (y ∈ Ã)

]−1

PY(Y = y). (17)

4.4 Assessing Failure Probability with Imprecisely Specified Anomalies

With Equation 17 in place, it is a relatively straightforward matter to obtain an analogue

of the postmortem probability when the classification of anomalies is imprecise, as

P (Y ∈ Ã|X; µ
Ã
(y)) =

∑
y

[
1 +

1− µ
Ã
(y)

µ
Ã
(y)

· P (y /∈ Ã)

P (y ∈ Ã)

]−1

P (Y = y|X), (18)

where for convenience the subscripts associated with all the P ’s have been omitted. The

key difference between Equations 17 and 18 is in the last term. The former entails an

unconditional probability for Y ; the latter, a conditional probability that Y reveals itself as

y, given X, the disposition of an item’s status—surviving or failed. Note that P (Y = y|X)

is like the postmortem probability of Section 3.1, save for the fact that Y can now take a

range of values y, instead of it being 0 or 1.

To assess an item’s survival probability were an imprecisely specified anomaly be de-

clared as Y ∈ Ã, we consider the analogue of Equation 13. Specifically, we have

P (X = 1|Y ∈ Ã;H) ∝ P (Y ∈ Ã|X = 1;µ
Ã
(y)) · p, (19)

20



where the middle term is given by Equation 18, and as before, p is our prior probability

that (X = 1).

Equation 19 forms the basis of assessing the item’s survival probability when the pres-

ence of an anomaly is actually declared, but not the extent of the defect that is be-

lieved to result in an anomaly. That is, we are not given the value of y. In this case

P (Y ∈ Ã|X = 1; µ
Ã
(y)) is viewed as the likelihood and the left-hand side of Equation 19

becomes P (X = 1;Y ∈ Ã,H), the required probability. Consequently, Equation 19 leads

us to

P (X = 1;Y ∈ Ã,H) ∝ L(X = 1;Y ∈ Ã, µ
Ã
(y)) · p, (20)

which is our personal probability that (X = 1), given the presence of an anomaly that is

vaguely specified.

5 A Reason to Believe

Sections 3 and 4 required of us the specification of a conditional probability P (Y = y|X =

x;H) and the membership function µ
Ã
(y), y ∈ [0, M ], as a way of dealing with vagueness

and anomalies. What if vagueness and other reasons create an unwillingness to specify the

conditional probability but a willingness to specify a marginal probability P (Y = y;H)?

The notion of “belief” was introduced by Dempster (1967) as a way of dealing with

such partial specifications. Dempster’s development is articulated via a key feature of

axiomatic probability theory, namely, that in order to induce probability measures from

a probability measure space to another measure space it is necessary that the mapping

from the former to the latter be a many-to-one map. As an example, a random variable

is a many-to-one map. Consequently, its probability distribution function can be induced

from the probability measure space on which the random variable is defined. When the

mapping is a one to many map—as is the case with our anomaly (see Figure 2)—the

induced measure will no more be a probability measure. For a more detailed appreciation
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of this argument, we refer the reader to Appendix A. The induced measure not being a

probability measure, alternate labels for it become germane. Dempster’s choice of a label

is basic probability assignment, abbreviated BPA.

With respect to the problem at hand, suppose that we are able to elicit personal

probabilities of the type P (Y = y;H), y = 1 or 0, as pa and (1− pa) respectively. Given

pa, and the mapping of Figure 2, how may we describe our uncertainty about the survival

(or failure) of the item to time t? That is, how may we express our uncertainty about the

event (X = x) for x = 1 or 0?

The “belief function” approach of Dempster starts by noting that the mapping from

Y = y to X = x is a one to many map. In particular, if Γ denotes the mapping from the

Y -space to the X-space, then Γ(Y = 1) = {X = 1, X = 0}. That is, the singleton (Y = 1)

maps into the set {X = 1, X = 0} via the map Γ; in other words, Γ is a set-valued map,

similarly with Γ(Y = 0). However, in order to make the essence of our development more

transparent, we follow Wilson and Sentz (2003) and suppose that Γ(Y = 0) = (X = 1).

This means that the absence of an anomaly tantamount to the item’s success. In other

words, the mapping from Y = 0 to the X-space is a one-to-one map. Consequently, in

Figure 2, the arc joining the nodes (Y = 0) and (X = 0) needs to be removed.

With the above in place, the next step in the development of the belief function ap-

proach is to induce measures of uncertainty from the Y -space to the X-space. Recall,

that it is only the Y -space that has been endowed with probability as the measure of

uncertainty. Since the X-space has only two elements, (X = 1) and (X = 0), F(X), the

measure space (i.e., the set of all sets) generated by X, has four elements, namely,

F(X) = {{φ}, {X = 1}, {X = 0}, {X = 1, X = 0}}.

With Γ(Y = 1) = {X = 1, X = 0} and Γ(Y = 0) = (X = 1), the induced measure, say m,

on F(X) will be of the form: m(φ) = 0, m(X = 1) = P (Y = 0) = 1− pa, m(X = 0) = 0

and m{X = 1, X = 0} = P (Y = 1) = pa. Recall that in Dempster’s terminology, the
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m(•)’s constitute a BPA. It is easy to verify that m possesses the following two properties:

m(φ) = 0, and for F ∈ F(X),
∑

F∈F(X)

m(F ) = 1. However, m is not countably additive

and thus is not a probability measure. To make m a probability measure we should be

prepared to apportion pa between the events (X = 1) and (X = 0).

Once the BPA’s are in place, the belief function induced by the map Γ on F(X) is

defined , for any F, G ∈ F(X) as:

Bel(F ) =
∑

G⊆F

m(G),

and Bel(F ) is then considered as a quantified measure of uncertainty about F . Thus for

our problem at hand Bel(X = 1) = 1 − pa, whereas Bel(X = 0) = 0; also, Bel{X =

1, X = 0} = 1− pa.

Dempster has also introduced the dual of the belief function, called the plausibility

function, where for any F ∈ F(X)

Pl(F ) = 1−Bel(F c);

F c is the complement of F . For our problem at hand Pl(X = 1) = 1, whereas Pl(X =

0) = pa.

To make these ideas operational, that is, to make a pragmatic use of them, we need

to interpret Bel(•) and Pl(•). Using bets, Bel(X = 1) is the most you are willing to pay

for a bet on (X = 1): if Bel(X = 1) = 1 − pa, you are willing to pay at most 1 − pa to

receive one monetary unit if (X = 1). Pl(X = 1) is (1 - the most you are willing to pay

for a bet on (X = 1)c): if Pl(X = 1) = 1, you are not willing to pay anything to bet on

(X = 1)c = (X = 0).

5.1 Summarizing “Beliefs”

By way of a closure, we claim that the notion of belief, or its dual plausibility, comes into

play when joint probabilities of the type P (y = 1, X = 1;H) cannot be elicited, and when
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the marginal probabilities of the type P (Y = 1;H) = pa cannot be apportioned in a one

to many map. Intuitively, the uncertainty measure Bel(•) seems reasonable; it can be

seen as a lower bound on probability. When the mapping under discussion is a one-to-one

or a many-to-one, belief and probability agree, and thus the belief function will obey the

rules of probability. We may conclude by saying that there is a price to be paid for not

being able to elicit the required conditional probabilities, and the price is to forsake the

notion of probability and its accompanying virtues. Dempster has also proposed rules

for combining uncertainties, the details about which can be found in Shafer (1976) or in

Wasserman (1990).
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Appendix A

Belief and Plausibility

In order to gain an appreciation of the notion of “belief” and its dual “plausibility,”

it is best that we start off with a look at the essentials of measure theoretic probability.

This we do below via the following seven steps, each of which serves as a prelude to the

next step. We assume of the reader some familiarity with these steps. From Step 8 and

onwards, our discussion highlights arguments necessary to motivate the notions of belief

and plausibility.

1. Let (Ω,F(Ω), µ) be a probability measure space, with ω as an element of Ω, and µ

assessed for all members A of F(Ω).

2. Let (X,F(X)) be some measure space with x as an element of X. This is our space

of interest.

3. Let B ⊂ X; since F(X) is a σ-field generated by X, B ∈ F(X).

4. Our aim is to endow the space (X,F(X)) with a measure that encapsulates our

uncertainty about any B, where B ⊂ X, or about a singleton x, where x ∈ X,

should X have countable elements. Ideally, our measure of uncertainty should be

probability.

5. The measure that we endeavor to endow (X,F(X)) with, should bear some relation-

ship to the measure µ. This is because we have been able to assess probabilities on

the space (Ω,F(Ω)); i.e. we are prepared to place bets only on members of F(Ω).

6. In order to be able to do the above, we should connect the spaces (Ω,F(Ω), µ) and

(X,F(X)). This connection can be made in several ways, two of which are indicated

below:
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i) A mapping from Ω as the domain, to X as the range, or

ii) A mapping from Ω as the domain, to F(X) as the range.

7. The standard approach is 6 i) above; this is what leads us to the notion of a real

valued random variable, say Z.

Specifically, we take X to be the real line R, or a countably infinite set of integers

I = {0,±1,±2, . . .}, or a countably finite set of integers IN = {0,±1, . . . ,±N}.
When X = R , F(X) = B(X)—the Borel sets of R. When X = IN , then F(X) is

the power set of IN .

Suppose that X = R. Then Z is a mapping with domain Ω and range R. Further-

more, Z is a many-to-one map from Ω to R. Specifically, for every ω ∈ Ω, there is

one and only one Z(ω), and Z(ω) ∈ R. However, we do allow for the possibility that

for any two (or more) ω1, ω2 ∈ Ω, Z(ω1) = Z(ω2).

Now, a (fortunate) consequence of the many to one map Z is that such a map is able

to induce a probability measure, say µ∗, on (X,F(X)) [or to put it more correctly

on (R < F(R))]. Specifically, for any a ∈ R, the set (Z(ω) ≤ a) ∈ F(X), and

µ∗(Z(ω) ≤ a) = µ{ω ∈ Ω : Z(ω) ≤ a}

is a probability measure of the set (Z(ω) ≤ a). Consequently, we now have a prob-

ability measure space (X,F(X), µ∗) in addition to our original probability measure

space (Ω,F(Ω), µ).

Thus with a many-to-one map, we are able to describe our uncertainties about events

of interest in F(X) via a probability µ∗, with µ∗ being based on µ.

8. Suppose now that the connection between the spaces (Ω,F(Ω), µ) and (X,F(X)) is

established via a mapping Γ whose domain is Ω (as before) but whose range is F(X)

instead of X. That is, Ω Γ→ F(X). More specifically, for every ω ∈ Ω, Γ(ω) = B,

where B ∈ F(X).

27



If we assume that the above mapping is many-to-one, in the sense that every ω ∈ Ω

gets mapped to one and only one set B (where B may or may not be a single-

ton), then this mapping is known as a many-to-one set valued map. When such

is the case Γ is also able to induce a probability measure, say µ∗∗, on the space

(F(X),F(F(X)), µ∗∗), where F(F(X)) is a σ-field of sets generated by F(X). Con-

sequently, for any set C ∈ F(F(X)),

µ∗∗(C) = µ{ω ∈ Ω : Γ(ω) = C}.

Thus to summarize, a many-to-one set valued map is also able to induce a probability

measure µ∗∗ on the space (F(X),F(F(X))), assuming that the latter space is of

interest to us. But what about the space (X,F(X))? This after all, is our space of

interest.

9. The fact that Γ is a many-to-one set valued map on F(X) is tantamount to the fact

that Γ is a many-to-many point valued map on X. In particular, if X = R and

F(X) = B(R), then Γ is a many-to-many real valued map on R. Consequently, for

every ω ∈ Ω , Γ(ω) can take any and all values in an interval, say I, where I ∈ B(R).

Inducing a probability measure on I or any subset of I boils down to smearing µ(ω),

the probability measure on ω, over I. How should this measure be smeared? What

if one is unwilling to specify a strategy for smearing (or distributing) µ(ω) over

I? When such is the case we are unable to induce a probability measure form the

space (Ω,F(Ω), µ) to (X,F(X)). As a consequence, an alternative measure called

plausibility, abbreviated Pl(•), has been proposed on F(X). But before examining

Pl(•), it may be useful to better articulate this matter of smearing µ(ω) by looking

at a special case of I, namely an I consisting of a countable number of elements,

say two; denote these by {x1, x2}. Suppose that Γ−1{x1, x2} = ω; then µ(ω) is the

induced probability measure of {x1, x2}. However, to induce a probability measure

on x1 or x2, we need to split (apportion) µ(ω) in some logical and meaningful manner.
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To summarize, whenever the map connecting two measure spaces is a many-to-one

set valued, or a many-to-one point valued map, a probability measure can always be

induced from the domain space to the range space. Probability measures cannot be

induced when the mapping is a one-to-many, or a many-to-many, point valued map,

unless additional assumptions are made. When such assumptions cannot be made,

a compromise has to be struck and upper and lower probabilities enter the foray of

uncertainty assessment. These are discussed below.

10. Consider the subset B of X. Suppose that there does not exist an induced probability

measure from (Ω,F(Ω), µ) to B. That is, @ an ω ∈ Ω, such that Γ(ω) = B.

Now consider a set C ∈ F(F(X)) with the feature that C ∩ B 6= φ; suppose that

C is the only set in F(F(X)) that intersects with B. Since C ∈ F(F(X)), µ∗∗(C)

is known. Let ω1, ω2, . . . , ωn be such that Γ(ωi) = C, i = 1, . . . , n. Then, the

plausibility if B, denoted Pl(B) is the (probability) measure Pl(B) = µ{ω1, . . . , ωn}.
Alternatively put,

Pl(B) = µ{ω ∈ Ω;Γ(ω) = C and B ∩ C 6= φ}.

The above expression generalizes when more than one set intersects B. For example,

suppose that B ∩ Ci 6= φ, for i = 1, . . . , k, with Ci ∈ F(F(X)). Then

Pl(B) = µ{ω ∈ Ω;Γ(ω) = Ci and B ∩ Ci 6= φ, i = 1, . . . , k}.

Since there are several sets Ci that intersect with B, there are overlapping ω’s in the

definition of Pl(B). Consequently, it is also called an “upper probability”.

11. A notion dual to Pl(•)—in a sense to be explained later—is Bel(•); here

Bel(B) = µ{ω ∈ Ω;Γ(ω) = Ci, Ci ⊂ B, i = 1, . . . , k}.

Bel(B) is a lower probability, with 0 ≤ Bel(B) ≤ Pl(B) ≤ 1. Also, Bel(B) =

1− Pl(Bc).
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The measures Pl(•) and Bel(•) are not probability measures in the sense that

Bel(A ∪B) ≥ Bel(A) + Bel(B);

i.e. because of an overlap of ω’s, Bel(•) is super-additive.
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